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One-dimensional non-equilibrium kinetic Ising models with 
branching annihilating random walk 

Nora MenyhMt 
Research Institute for Solid State Physics, H-1525 Budapest, PO Box 49, Hungary 

Received 7 June 1994 

Abstract. Non-equilibrium kinetic Ising models evolving under the competing effect of spin 
flips at zero temperature and nearest-neighbour spin exchanges at T = 00 are investigated 
numerically from the point of view of a phase transition. Branching annihilating random walk 
ofthe ferromagnetic domain boundaries determines the steady state of the system for a mge of 
parameters of the model. Critical exponents obtained by simulation are found to agree, within 
enor. with those in Grassberger's cellular automata. 

1. Introduclion 

Non-equilibrium kinetic king models, in which the steady state is produced by kinetic 
processes in connection with heat baths at different temperatures have been widely 
investigated [l]. Most of these studies, however, are concerned with the effects the non- 
equilibrium nature of the dynamics might exert on phase transitions driven by temperature. 

A different line of investigating non-equilihrium phase transitions has been via branching 
annihilating random walk (BAW) processes. Here particles chosen at random carry out a 
random walk (with probability p )  with annihilation upon meeting. The increase of particles 
is ensured through production of n offsprings with probability 1 - p .  It has been shown 
by Sudbury [a], that the n = 2 BAW in one dimension leads to extinction for any p > 0. 
Otherwise a phase transition occurs for finite p, which is in the same universality class as 
directed percolation (DP) if n = odd, while the critical behaviour is different for n = even 

Grassberger et al [4] studied probabilistic cellular automata models in one dimension 
involving the processes k 4 3k and 2k + 0 (k stands for kink), very similar to BAW with 
n = 2. These models, however, do show a phase transition and both time-dependent and 
steady-state simulations have resulted in nOn-DP values for the relevant critical exponents 
[5]. Quite recently, Jensen [6] has reported computer simulation data according to which 
the n = 4 BAW is in the same dynamic universality class as Grassberger's cellular automata. 

It is the aim of the present paper to introduce a class of general non-equilibrium kinetic 
King models (NEKIM) with combined spin-flip dynamics at T = 0 and spin-exchange 
dynamics at T = 00 in which, for a range of parameters of the model, Grassberger-type 
transitions take place. The advantage over the cellular automaton formulation is that in 
NEKIM the rates of random walk, annihilation and kink-production processes can separately 
be controlled. This circumstance leads to the understanding of the n = 2 BAW result which 
occurs in our model as a special case. Results of computer simulations are presented for 
different critical exponents and scaling function l7om random as well as I-kink initial states. 

t E-mail address: menyhard@power.kfld.szfki.hu 
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2. Themodel 

The model we will investigate here is a one-dimensional kinetic Ising model evolving by a 
combined spin-flip and spin-exchange dynamics with the restriction that spin-flip transition 
probabilities satisfy detailed balance for the equilibrium state of the (ferromagnetic) king 
model at temperature T = 0 while the spin exchanges are random (T = w). 

A general form of the Glauber spin-flip transition rate in one-dimension for spin si 
sitting at site i is [71 (si = &I): 

where y = tanh2J/kT, with J denoting the coupling constant in the king Hamiltonian 
r and 6 are further parameters which can also depend on temperature. There are three 
independent rates 

where the suffices same, etc indicate the three possible neighbourhoods of a given spin 
(tfl., .It$ and tl..l. respectively). In the following T = 0 will be taken, thus y = 1, 
wSme = 0 and r, 6 are constants to be varied. In this l i t  the three best known single 
spin-flip kinetic Ising models correspond to the following choices of parameters: 
(i) Glauber model [SI: r = I ,  6 = 0 
(ii) Metropolis model 191: r = z ,  3 6 = - L  3 
(iii) Haake-Tho1 model [lo]: r = 2, 6 = 1 . 

Kawasaki [7] to situations with conserved magnetization, can be given, for y = 0, as 
The spin-exchange transition rate of neighbouring spins, originally introduced by 

wii+~ = i ~ e x [ l  -sisit~I (5 )  
where pex is the probability of spin exchange. 

The transition probabilities (2x4) are responsible for basic elementary processes of 
kinks in the usually expected ferromagnetical ordering of Ising spins. A kink separating 
two domains can carry out random walks with probability 

1 
prw a 2Wj"dif = -(I - 6) r 

while two kinks getting into neighbouring positions will annihilate with probability 

(wsm is responsible for creation of kink pairs inside of ordered domains at T # 0). 
In case of the spin exchanges, which also act only at phase boundaries, the process of 

main importance here is that a kink can produce two offsprings by the next time step with 
probability 

Pk-+3k Per, (8) 
The above-mentioned three processes compete, and it depends on the parameters r, 6 and 
pox what the result of this competition will be. It is important to realize that the process 
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k + 3k can develop into propagating offspring production only if pnv > pan, i.e. the 
new kinks are able to travel on the average some lattice points away from their place of 
birth and can thus avoid immediate annihilation. It is seen from the above definitions that 
6 < 0 is necessary for this to happen. In the opposite case the only effect of the k + 3k 
process on the usual king kinetics is to soften domain walls. As a matter of fact, in earlier 
investigations (though from a different point of view) of the competing king kinetics in one 
dimension the choices of parameters correspond to the latter situation [ 111. 

3. Pbase boundary, critical exponents 

We have considered a simplified version of the above model by keeping only two parameters 
instead of three by imposing the condition 

(9) 
In the plane of parameters pw and 1-6 = (Zpw/pan) / ( l  + pw/pan) the phase diagram 

shown on figure 1 has been obtained by computer simulation. The initial state has been 
random with zero average magnetization. Application of our non-equilibrium rule then 
corresponds to quenching from T = 00 to T = 0 with subsequent exchanges ( T  = 00) at 
each time step. The line of phase transitions separates two kinds of steady states reached 
by the system for large times: in the Ising phase the system orders while the active phase 
is disordered from the point of view of the underlying spins. The cause of disorder is 
the steadily growing number of kinks with time. Here kink multiplication is a branching 
process, as explained above, in a sense similar to directed percolation while in the usual 
case of king phase transition with Glauber kinetics kinks are created pairwise inside of 
ordered domains at non-zero temperature. 

Exponent a, used for determining the phase boundary, as well as other exponents 
occurring below are defined in the framework of the scaling considerations presented by 

pk-r3k = 1 - ( P w  + Pan).  

1-6 

ISINC PHASE i 
0 1  1 

P.. 0 

Figure 1. Phase diagram of the two-parameter model. The phase boundary has been obtained 
by measuring n(t) ,  the densiry of kinks, Starting from a random initial distribution and locating 
the phase hansition points by n( t )  cx t P  with a = 0.27 i 0.04. Typically the number of 
lattice points has heen 1 = 2000 and averaging over 500 independent ms has been performed. 
Checks for unimportance of finite size effects have been canied out. The dotted line with armw 
indicates the aitical point and the direction of deviation f” it along which fwther critical 
characteristics have been determined. 
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Grassberger [ 5 ] .  The branching increase of kinks becomes obvious when starting from a 
single kink state at t = 0. It makes sense of using such an initial state only for parameter 
values at and above the transition point (in the active phase); below it there is no way of 
reaching the ordered (Ising) phase from a single kink initial state. The scaling form for the 
density p ( x ,  t ,  E )  of the kinks has been supposed in the form [5 ]  

p ( x ,  t ,  E )  a f - a @ ( € X ” ” l ,  €t””a).  (10) 
Here E measures the deviation from the critical probability at which the branching transition 
occurs, VI and U, are exponents of coherence lengths in space and time directions, 
respectively. $ ( U ,  b) is analytic near a = 0 and b = 0. Using (10) the following relations 
can be deduced. 

The average number of kinks N ( t ,  E )  grows in the active phase as 

N ( t .  t) a t q J l ( a ” Y 1 ’ .  (11) 

((2 - (x ( t ) ) ) * ) ”z  0: (x,,(t) - X d ) )  a tz’z 

The RMS size of the cluster growing from the singlekink initial configuration is given 
by 

(12) 
where Z = 2 v l / q .  

the average kink density in the active phase: 
When starting from a random initial state the exponent fl characterizes the growth of 

p ( t )  = lim p ( x ,  t ,  E )  a € 8  (13) 
1-m 

while the decrease of density at the critical point is given by 

n ( t )  a t - w .  (14) 
The exponents are connected by scaling laws: f l  = vga, a = Zf2 - q.  

The phase boundary shown on figure 1 has been identified using (14). It is worth noting 
that the critical point marked on the phase boundary has been chosen in a region where the 
effect of transients in time dependent simulations is relatively small. The rest of the critical 
exponents have been measured only around this point 1/ r, = 0.35, 8, = -0.4 & 0.01 and 
(p& = 1 - 2/r, = 0.3 & 0.01. The deviation from the critical point has been chosen in 
the direction of S. 

The above-mentioned transients show up for small times and are particularly discernible 
at the two ends of the phase boundary where the spin-flip and spin-exchange processes have 
very different time scales. 

For this reason near pa = 1.0 where we get close to 8 = 0 (Glauber case), it has 
been especially difficult to get a reliable numerical estimate for U ;  the exponent has been 
found to grow slowly with time from a nearly zero value at small times. Several runs with 
different values of the parameters, also without the restriction (9). have been performed in 
this Glauber limit all showing that the 6 = 0 case for all r, p m  values, remains Ising-like: 
the exponent a tends to the value (Y = 0.5 for late times. The accuracy of OUT simulations 
does not allow us to make a quite definite statement, nevertheless it seems very likely that 
the asymptote of the phase boundary is S = 0 for pen = 1.0. Therefore the conjecture that 
pw p.. is a necessary condition for a BAW-type phase transition to occur seems to be 
supported by the present simulations. 

The value of LY provided by our simulations agrees, within error, with that obtained by 
Grassberger [4,5] in a one-dimensional elementary cellular automaton model with special 
added noise p .  The same is also true for the rest of the critical exponents reported below. 
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Figure 2. Density of kinks as a function of time on a log-log plot for different values of 
6 = 16 - d,j, where 8, = -0.4 * 0.01 is the critical value of parameter S at Ihe chosen critical 
point. per is kept fixed at its critical value. Lattice sizes: 200&8000, number of independent 
rum: 400-800. 

1 

Figure 3. The growth of the average 
particle oumber 31 the critical point when 
starting from a single-kink initial state. 
The number of independent runs in the 

too 1000 averaging: 900. The scale is double 
t logarithmic. 

Figure 2 shows the density of kinks in the active phase for different values of the deviation 
from the critical point E = IS - & I ,  starting from random initial states. At E = 0 the 
power-law behaviour (14), is seen with LY = 0.27 rt 0.02. @ has been obtained directly, 
according to (13), by taking the level-off values of n(t ) ,  some of which can be read off 
from figure 2. Though this is known to be a fairly inaccurate way to determine @ [SI, we 
have found-though only over one decade in +-the reasonable value B = 0.8 i 0.08. 
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Figure 4. Average distance between 
rightmost and leftmost kinks at the critical 

* point on a double logarithmic scale. 
Average over 900 indepndent NnS has 
been carried out. 
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t 
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Figure 5. Scaling function @(cr 'h)  
of (11)  for different values of 6 .  

Initial state: single-kink, number of 
independent runs in avenging: 500. 

On figures 3-5 results of simulations starting from one-kink initial states are seen. Data 
for N ( t ,  6) at E = 0 are presented on figure 3; the straight line on the log-log plot leads 
to q = 0.30 & 0.02. Figure 4 shows the growth of the average cluster size, (lo), again on 
log-log scale, yielding Z/2 = 0.57 kO.01. Supposing the scaling law ,9 = u p  to be valid 
we get U,! = 2.9. 

Using the values obtained for the exponents, we have checked the consistency of the 
data within the scaling framework by measuring the scaling form, (11). The result is 
seen on figure 5 for some values of E ,  nevertheless also only inside of a decade, because 
of computational difficulties. The second scaling law: U = Z/2 - q is also fulfilled 
with the exponents found in our simulations. For comparison we cite here the results of 
the time-dependent simulations for the CA models by Grassberger [ 5 ] :  ,9 = 0.94 k 0.06, 
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~=0.272&0.012,  Z =  1.11=kO.O2, U,, =3.3f0.2anda=0.283f0.16. 

4. Connection With BAW 

The definition of BAW is the following. The process takes place in two steps: (i) a particle 
chosen at random moves to a nearest-neighbour place also randomly chosen, with probability 
p and (ii) a particle chosen at random produces n offsprings on neighbouring sites with 
probability 1 - p .  If any of the neighbouring places in question is already occupied then 
annihilation takes place. The k + k + 0 process is prescribed to occur with probability 
unity. As mentioned in the introduction, no phase transition takes place in then = 2 case. 

We can bring into relation the n = 2 BAW in ID and NEKIM by noticing that in the 
BAW rule the transition probability for annihilation is unity. From (7) paa = 1 leads to 
r = (1 + 6)  giving, with (6), pw = (1 - 6)/(1+ 6). From the trivial correspondence 

while changing p ,  the parameters of the corresponding ~ K I M  models take the values from 
6 = 1, pex = 1, r = 2 at p = 0 through values 6 t 0, pcx < 1, r c 2 to 6 = 0, pex = 0, 
r = 1 at p = 1. In these regions, however, no phase transition has been found to take 
place, all steady states are Ising-like. 

5. Discussion 

Non-thermal phase transition has been found in a family of one-dimensional kinetic king 
models evolving by a combined spin-flip and spin-exchange dynamics. The single spin-flip 
transition rate is supposed in its most general form. It contains three parameters of which the 
temperature is fixed at zero where the remaining two control the probability of random walk 
and annihilation. The non-zero transition rate of spin exchange leads to (k + 3k)-type kink 
production and provided R w  overwhelms annihilation, increasing rate of kink production 
results in a phase transition from king-like to active phase. Numerical simulations have 
given evidence that the model is in the same universality class as Grassberger’s cellular 
automata models [4,5], where a certain stochastic element (with probability p )  of a simple 
ID CA rule drives the transition. For p = 0 the rule is deterministic and the steady state is 
infinitely degenerate, when starting from a random initial situation the system settles into 
one of these states after a few iteration steps. The corresponding kinetic Ising model is the 
HaakeThol model in the T + 0 limit mentioned in section 2. Increasing p up to pc in 
the CA model, could correspond to a line on our phase diagram (figure 1) starting at the 
origin and ending at some intermediate point of the transition line. It would be difficult, 
however, to make a closer (quantitative) correspondence between the two kinds of models 
since in CA this single parameter p is responsible for random walk as well as k + 3k 
in a complicated,nonlinear way. To find correspondence between our model and the two 
offspring BAW is more straightforward. For this aim restriction (9) had to be lifted since 
pm = 1 is taken in BAW rules and then (9) would lead to negative probabilities. According 
to the correspondence between BAW and NEKIM it is clear that a necessary condition to find 
a phase transition is paa < 1. 
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